
VISUAL SUPPORT FOR THE ISLE SIMULATION ENVIRONMENT

BY

TINA ELIASSI-RAD

B.S., University of Wisconsin, 1993

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois

i

ACKNOWLEDGMENTS

I would like to thank my thesis adviser, Professor M. T. Harandi, for his direction,

encouragement, and comments on this thesis.

Thanks also to my husband, Branden Fitelson, for his constant support and

guidance during the writing process of this thesis.

ii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ...1

1.1 Visual Support for Software Systems ...1

1.2 Visual Support for a Simulation Environment..9

CHAPTER 2 ISLE, IMPORT, AND THE GRAPHICAL EDITOR11

2.1 The Integrated Simulation Language Environment (ISLE)..........................11

2.2 The IMPORT Programming Language...13

2.3 The ISLE Designer Tool Set...16

2.4 The Graphical Editor: An Overview..18

CHAPTER 3 THE GRAPHICAL EDITOR:

ARCHITECTURE AND USER-INTERFACE22

3.1 The Architecture of the Graphical Editor ...22

3.1.1 The Database Manager...23

3.1.2 The Interface Manager ...24

3.2 The User Interface of the Graphical Editor...26

CHAPTER 4 TEXT AND GRAPH TRANSLATIONS...30

4.1 The Intermediate Language ..30

4.2 IMPORT Text to ER Graph Translations ...31

4.3 ER Graph to IMPORT Text Translations ...34

CHAPTER 5 VIEWS..37

5.1 Views: What and Why ...37

5.2 IMPORT Views ..37

5.3 Techniques for Generating IMPORT Views ..38

5.3.1 Generating IMPORT Views Using the Query Language38

iii

5.3.2 Generating IMPORT Views Using Graphical/Program Tools40

5.4 Multiple Views and Viewing Modes ..41

CHAPTER 6 CONCLUSION AND EXTENSIONS..43

APPENDIX A THE GRAPHICAL EDITOR: AN EXAMPLE.............................46

A.1 The Aquarium Simulation..46

A.2 IMPORT Text to ER Graph Translation in the Aquarium Simulation47

A.3 ER Graph to IMPORT Text Translation in the Aquarium Simulation50

A.4 Views of the Aquarium Simulation..53

APPENDIX B LANGUAGE CONSTRUCTS..55

B.1 The BNF for the Intermediate Language ...56

B.2 The BNF for the Query Language..57

REFERENCES 58

iv

LIST OF FIGURES

Figure 1.1

Program Visualization and Visual Programming as Inverse Mappings9

Figure 2.1

The Relationships between IMPORT and Other Languages16

Figure 2.2

The Architecture of the ISLE Design Tool Set..17

Figure 3.1

The Structured Design of the Database Manager ..23

Figure 3.2

The Structured Design of the Interface Manager...24

Figure 3.3

The Graphical Editor's Main Screen (ER Model)..26

Figure 3.4

Components of the Graphical Editor’s Main Screen ...27

Figure 4.1

An Intermediate Language Node ...31

Figure A.1

A Sample Screen from an Aquarium Simulation...47

Figure A.2

Translation of Aquarium Simulation IMPORT Code into IML Text..................48

Figure A.3

Translation of Aquarium Simulation IML Text into an ER Graph......................49

v

Figure A.4

Extending the ER Graph of the Aquarium Simulation ..51

Figure A.5

Translation of the Extended IML Text into an IMPORT Skeleton52

Figure A.6

An IMPORT View of the Aquarium Simulation ...53

Figure A.7

Another IMPORT View of the Aquarium Simulation...54

Figure B.1

BNF for the Intermediate Language ..56

Figure B.2

BNF for the Query Language...57

1

CHAPTER 1

INTRODUCTION

All men by nature desire to know. An indication of this is the delight we take in our
senses; for even apart from their usefulness they are loved for themselves; and above all
others the sense of sight. For not only with a view to action, but even when we are not

going to do anything, we prefer seeing to everything else. The reason is that this, most of
all the senses, makes us know and brings many differences between things.

Aristotle
Metaphysics

1.1 Visual Support for Software Systems

Traditionally, the terms ‘visual programming’ and ‘program visualization’ have often

been used interchangeably [10]. Recently, authors have been using these terms to

distinguish different aspects of software engineering. For example, Myers [10] defines a

visual programming system as “any system that allows the user to specify a program in

two-(or more)-dimensional fashion”. He goes on to explain that traditional textual

programs are not categorized as two dimensional because the compiler or interpreter

treats them as a “long, one-dimensional stream”.

On the other hand, Myers says that program visualization is “an entirely different

concept”. Specifically, Myers states that, in program visualization “…the program is

specified in the conventional, textual manner, and the graphics is used to illustrate some

aspect of the program…” Therefore, according to Myers, program visualization only

involves illustration of some aspects of an existing program (which may, itself, have

been specified in a conventional textual language); whereas, visual programming

involves development of a program using two or more dimensional graphical tools.

2

Other authors have made a similar distinction. For instance, Chang [3] says that

the defining characteristic of visual programming is its “use of visual expressions in the

process of programming” (as opposed to conventional, textual expressions). He clarifies

visualization as the “use of visual representations to illustrate data, program, the structure

of a complex system, or the dynamic behavior of a complex system.”

Following Myers and Chang, we use the term program visualization to refer to

any process of program manipulation and/or analysis that involves visualization. We

reserve the term visual programming to refer to only those aspects of program

development in which the user makes changes to a program using graphical tools.

Moreover, we define the term visual support system as a computer system that supports

both visual programming and program visualization. The present research involves a

visual support system that is primarily concerned with program visualization.

Before we give a classification of visual support systems and techniques, we

would like to answer the following two foundational questions about visual support:

• What is the purpose of a visual support system (i.e. , what is it designed to do)?

• What advantages do visual support systems have over traditional (non–visual)

systems (i.e. , why were visual support systems invented in the first place)?

These two questions go hand-in-hand. It would be quite difficult to give an adequate

answer to either of these questions without giving at least a partial answer to the other.

Only after we have adequately answered both of these questions will we have a

satisfactory understanding of what visual support systems are and why users1 might

prefer using them over traditional non–visual systems.

1 We will be using the term ‘user’ in a very general way. The term ‘user’ will denote many

different kinds of software users. For example, a ‘user’ might be a novice programmer, an instructor, a
professional software engineer, etc . We want this term to be as generic as possible and still stay within the
scope of software users who could potentially benefit from using visual support systems.

3

Below, we give a brief survey of how some experts in the field have tried to

answer these important questions about visual support systems. Then, we will try to give

some answers of our own. The following expert opinions appear in (what we take to be)

increasing order of breadth and informativeness with respect to both of our central

questions.

Brown et . al. [2] suggest that ‘the’ purpose of visual support systems is “to help

programmers form clear and correct mental images of a program’s structure and

function.” We doubt that all visual support systems have a unique purpose. In general,

the purpose of a particular visual support will depend on the context in which it is used.

In any case, the above statement of Brown et. al. concerning the purpose of visual

support is too vague to provide a complete and satisfying answer to either of our two

questions. What we need is a more informative and careful answer, one which touches

on both questions in a more general way.

Grafton and Ichikawa [5] shed more light on both of our questions. They argue

that visual support systems are useful tools because they provide clear and concise

representations of both static and dynamic aspects of software using two or three

dimensional graphics with coloring and highlighting. Consequently, users of visual

support systems can cut through the complexity of software. We are starting to

understand not only what visual support is; but, why users might prefer using visual

support systems to traditional non-visual systems. Specifically, Grafton and Ichikawa

give us reason to believe that visual support systems can (via graphical means) convey

information about programs to users in a more effective way than traditional non-visual

systems .

Raeder [12] gives a slightly more informative statement of this kind. He explains

that traditional textual representations of complex programs cannot be readily understood

by users. Such representations of programs do not make it clear to the user (at any given

time) what the state of the program is. By maximizing the amount of information that

4

can be simultaneously conveyed to the user on their computer screen, visual

representations can convey more information about a program’s structure than traditional

textual representations.

A similar kind of sentiment has been expressed more elaborately by Myers [10].

He states that the use of visual tools makes the programming task easier than it would be

using only traditional textual tools. Myers explains that graphical representations of

programs (generally) tend to de-emphasize syntactical issues since they are at a higher

level of abstraction than textual representations. Moreover, he explains that graphical

representations tend to convey more information about the state of a program (e.g., its

current variables and data structures) than is feasible with just textual displays. As a

result, Myers points out that (among other things) visual support systems can be

especially useful for debugging programs.

There seem to be several common threads running through the above expert

testimonials. The consensus seems to be that visual support systems generally share at

least the following properties:

• Visual support systems graphically aide the user in understanding various

aspects of programs. Depending on the context, visual support systems may

include graphical representations of control flows, data flows, data structures, etc .

Moreover, as visual support evolves, the set of program aspects captured and

intuitively represented by visual support systems will inevitably grow.

• Because visual support systems use graphical representations, they are able to

facilitate the user’s understanding of (at least some) program aspects in a more

effective way than traditional non-visual systems. As they say: “A picture is (at

5

least sometimes) worth 1000 words.” This is especially true in the areas of

object-oriented programming (OOP) and parallel programming [12]. 2

 • Because visual support systems often confer a better understanding of

programs than their non-visual counterparts, they tend to provide greater support

to the user in all activities (i.e. , the analysis, design, construction, test, and

maintenance activities) of the software lifetime. For example, Brown et. al. [2]

have identified a set of categories of visual support systems which span all phases

of the software life cycle.

Stevlosky, Ackermann, and Conti [15] claim that “the programming process is a

highly demanding intellectual activity requiring visual support at all stages of

development”. While this claim may seem a bit too strong (since it implies that some

combination of program and visual programming is necessary for successful software

engineering), our attempt to answer the two key questions of this section illustrates that

there is some truth in it. Surely, properly understanding (thus, developing and analyzing)

software systems is generally a daunting task. What makes visual support systems so

attractive is their ability to efficiently and intuitively (via graphical means) convey

necessary information to users; thereby, reducing the apparent complexity of programs.

Visual support systems have both visual programming and program visualization

aspects. By describing program visualization and visual programming, we can gain a

2 We can give a more precise and formal statement of the claims made in this bullet. Let I(Sv) be

the amount of information per unit time conveyed to the average user by a visual representation of some
aspect of a program structure S; and, let I(S t) be the amount of information conveyed per unit time to the

average user by a traditional (non-visual) representation. We are making two distinct claims here. The first
claim is that, for some program structures S: I(Sv) >> I(S t). This is a formal way of saying “A picture is

(sometimes) worth 1000 words”. The second claim we are making is that, for some pairs of program
structures S, S*: [I(Sv) – I(S t)] >> [I(S*v) – I(S* t)]. In other words, some programs are better suited to

visual representation than others. For example, an object-oriented program S (perhaps, written in C++)
may be better suited to visual representation than a functionally equivalent non object oriented program S*
(say, written in FORTRAN).

6

better understanding of the general nature of visual support systems. For the remainder

of this section, we will give classification schemes for program visualization and visual

programming systems, respectively. Since the present research is concerned primarily

with program visualization, our discussion of program visualizations will be more

complete than our subsequent discussion of visual programming.

Recently, a systematic approach for classifying and understanding program

visualization systems has been introduced by Roman and Cox [13]. In their model,

program visualization is understood as a “mapping from programs to graphical

representations”.3 As the authors explain, the defining characteristics of a program

visualization system are its graphical primitives, the semantics of the term ‘program’, the

possible mappings between programs and graphical representations, and the ways in

which these mappings are implemented.

In the Roman and Cox model, all program visualization systems involve

interaction between the following three participants:4

• A programmer , who generates the program text.

• An animator , who facilitates the mapping from programs to visualizations.

• A viewer , who observes the graphical representations of the program text.

Roman and Cox [13] classify program visualization systems using the following

five criteria:

3 Although Roman and Cox have mainly applied their model of program visualization systems to

classifying systems which visualize the execution of programs, we think that all program visualization
systems fit somewhere in their taxonomy. Moreover, their taxonomy can be extended quite naturally to
include visual programming systems. We discuss such an extension later in this section.

4 Of course, these ‘participants’ need not be human beings. They may (and often will) be parts of
computer systems themselves.

7

• Scope: “What aspect of the program is visualized?”

A program may be distinguished by its code, data and control states,

and/or execution behavior. So, the scope of a program visualization system is

determined by which aspects of a program it can visually capture. Depending

on the program visualization system’s capabilities, it may visualize one or

more aspects of a program.

• Abstraction: “At what level of abstraction is the information conveyed by the

visualization?”

For instance, visualizations that consist of highlighted portions of the

code of some object-oriented program P will generally be at a very low level

of abstraction. Whereas, graphical diagrams of the relational structure of P

will be at a rather high level of abstraction. In such diagrams, some

information about the low-level structure of the program code will be hidden

from view. Abstraction is necessary for managing the complexity of

displayed material. After all, computer displays are only so big.

• Specification method: “What mechanisms does the animator use to construct

the visualization?”

A system’s power and flexibility is determined by its specification

method. Specification methods range from “hard-wired” mappings (which the

animator has no control over) to arbitrary animator-defined mappings. Some

program visualization systems emphasize mapping on program states, while

others emphasize mapping on events. Moreover, depending on their

specification methods, some systems may require modifications to the original

code in order to generate visualizations.

8

• Interface: “What tools does the program visualization system provide for the

visualization of programs?”

Generally, these tools are the graphical primitives and combinations of

these primitives employed by the animator. The animator uses these tools to

create the graphical representations. The viewer uses them to interact with the

visualizations in order to investigate and understand the visualization. As

Roman and Cox [13] explain: “The interface is what the viewer sees and how

the viewer controls what the system shows.”

• Presentation: “What is the meaning of the visualization?”

Presentation is a cognitive (and not simply perceptual) aspect of

program visualization. So many boxes, lines, circles, arrows, icons, etc. are

meaningless to the viewer, unless they are presented in such a way that their

semantics are made clear to the viewer.

The taxonomy of program visualization systems developed by Roman and Cox

[13] is broad enough to classify all program visualization systems; and, it is informative

enough to allow for meaningful and interesting comparisons between various program

visualization systems. By adopting their framework, we are able to locate our present

research (qua program visualization) on the ‘world map’ of program visualization

systems, and obtain a deeper understanding of what we have accomplished.

A complete characterization of visual support systems requires an understanding

of both visual programming and program visualization. The program visualization

taxonomy of Roman and Cox [13] does not explicitly provide us with the requisite

understanding of visual programming. However, their approach of conceptualizing

program visualization as a mapping from programs to graphical representations can be

‘inverted’ to yield a parallel classification scheme for visual programming systems. In

other words, we can think of visual programming as a mapping from graphical

9

representations to programs. Along these lines, Grafton and Ichikawa [5] have suggested

that an effective visual programming system must define a precise mapping of its

graphical symbols into a syntactically correct formal structure; and, eventually, into

efficient program code. Figure 1.1 provides a graphical representation of the relationship

between program visualization and visual programming, conceptualized as inverse

mappings between programs and graphical representations.

Programs
Graphical

Representations

Program Visualization

Visual Programming

Figure 1.1: Program Visualization and Visual Programming as Inverse Mappings

1.2 Visual Support for a Simulation Environment

The core of a simulation environment is its underlying simulation language. Since a

simulation environment will inevitably make use of components available in its

simulation language, the nature of the underlying simulation language strongly influences

the structure and form of the simulation environment [16]. Consequently, the choice of

simulation language is of paramount importance.

General purpose programming languages (e.g., PASCAL) are deficient for the

purposes of simulation because they do not adequately support primitives necessary for

representing many aspects of a simulation model including (1) its time dimension, (2)

concurrency, (3) the creation of objects in the model, or (4) the handling of relationships

between objects [8]. On the other hand, object-oriented languages can readily provide

10

most of these primitives [8, 16]. In fact, it is now widely agreed upon that object-

oriented methodologies are most conducive to simulation programming [8, 9, 16, 17]. As

a result, most of the recent generations of simulation programming languages that have

evolved out of traditional, general purpose languages are object-oriented in nature [8, 17].

Object models are typically specified (whether on paper, or on a computer screen)

in a two-dimensional field using graphical primitives [14]. Hence, it makes sense to

specify object-oriented programs in an analogous way. Moreover, analyzing the structure

of an object-oriented program is most easily done graphically, simply by visually

examining various aspects of the program’s two-dimensional object model. It stands to

reason, therefore, that visual support techniques (involving both visual programming and

program visualization) are invaluable tools for the development and manipulation of

object-oriented programs.

The purpose of this research is to provide visual support for the Integrated

Simulation Language Environment (ISLE). ISLE is a project of the Advanced

Simulation and Software Engineering Technology (ASSET) team of the U.S. Army

Construction Engineering Research Laboratory (USACERL). ISLE is a simulation-based

software engineering environment which integrates process-based, discrete-event

simulation with object-oriented modeling methodologies, declarative programming, and

persistent data storage. The underlying simulation language of ISLE is IMPORT which

gives ISLE its requisite functionality. The CASE tool described in this thesis provides

visual support for the development, manipulation, and analysis of IMPORT programs. In

chapter 2, we place the present work in its proper context by describing ISLE and

IMPORT in more detail. For the remainder of the thesis, we discuss the design, interface,

and various distinctive features of our visual ISLE CASE tool.

11

CHAPTER 2

ISLE, IMPORT AND
THE GRAPHICAL EDITOR5

2.1 The Integrated Simulation Language Environment
(ISLE

The objective of ISLE is to provide a software engineering environment for the

identification and development of technologies with a need for intelligence,

collaboration, and simulation [18]. The ISLE environment includes: the IMPORT

programming language, a persistent object-oriented database (called the object

repository), and a set of computer aided software engineering (CASE) support tools.

The IMPORT programming language is the underlying simulation language of

ISLE. IMPORT combines the main features of object-oriented modeling, process-based

simulation, declarative programming, and persistent object storage into a single

programming language.

The persistent object repository stores IMPORT objects in an object-oriented

database. A set of generic access primitives have been defined to make ISLE

independent of any particular database. ISLE has a collection of classes that model

intermediate forms of IMPORT compilation structures. These classes set-up the basic

data structures necessary to support the ISLE software engineering environment. They

allow IMPORT abstract syntax tree storage in the object-oriented repository, and they

5 In this chapter, we describe the relevant aspects of the ISLE system, borrowing figures and

definitions from the on-line document describing the system [18].

12

provide a common access mechanism for the entire ISLE tool set. ISLE is designed to be

a multi-user environment. Accordingly, a version control system has been implemented

atop the object repository. The version control system provides the user with the version

of the object repository he/she demands.

Each of ISLE’s CASE tools interact with the object repository. The purpose of

the ISLE CASE tools is to help ease the labor-intensive process of developing large scale

software. The ISLE CASE tools are divided into two main groups: the design support

tools and the analysis support tools. The design support tools aid the user in the

development and manipulation of object specifications and other program artifacts. The

design support tools include a graphical editor, a text editor, a parser, an unparser, a

system-level framework selector, an automatic specification refiner, an object evolution

manager, and a collection of dynamic collaborative agents [18].

The graphical editor (which is the main subject of this thesis) is a program visual

support tool that helps the user develop, manipulate, and analyze IMPORT programs

graphically. The text editor aides the user in the development and manipulation of

IMPORT programs, textually. The parser takes an IMPORT program as input and places

intermediate forms of its objects into the object repository. The unparser retrieves

intermediate forms of IMPORT objects from the repository and translates them back into

IMPORT source code for use by the editors. The system-level framework selector allows

the user to select system-level frameworks directly from the object repository. The

selected frameworks are composed of IMPORT object models. These frameworks are

given to the graphical editor to manipulate. The automatic specification refiner assists

the user in automated IMPORT specification and programming. The object evolution

manager assists the user in making global modifications to objects in an IMPORT

program. The collection of dynamic collaborative agents facilitates collaboration

between IMPORT programs.

13

The analysis support tools are involved in the construction and maintenance of

executable IMPORT programs. The analysis support tools include a type checker, a code

generator, a debugger, an optimizer, and a compilation manager [18].

The type checker verifies that the type of each IMPORT construct is appropriate

for its context. The code generator produces C++ code from an IMPORT program. The

debugger aids in the identification and correction of IMPORT programs. The optimizer

improves the C++ code produced by the code generator, so that it compiles into more

efficient machine code. The compilation manager assembles an executable program

from the IMPORT source program.

2.2 The IMPORT6 Programming Language

The IMPORT programming language is the nucleus of ISLE. It has been designed to

integrate object-oriented methodology, process-based discrete event simulation, logic

programming, and persistent object storage into a single programming language. The

significance of each of these four features, and the manner in which IMPORT provides

them is described below:

• Object-Oriented Modeling Methodology

One of the original motivations for the object-oriented paradigm was

to provide a faithful (and intuitive) mapping between real-world objects and

their implementation in computer models [18]. As such, it is not surprising

that object-oriented methodologies are particularly well suited to simulation

and modeling [14, 16]. Some have even maintained that all programs are

simulations (this extreme position is known as The Scandinavian View [6]).

6 The word IMPORT stands for Integrated Modular Persistent Object Representation Translator.

14

IMPORT takes advantage of this natural marriage between object-

oriented methodologies and simulation. IMPORT follows the Rumbaugh

Object Modeling Technique (OMT) [14]. Data abstraction in IMPORT is

implemented by declaring an object to be of a certain class. An object class is

a group of objects which share common attributes and behaviors. These

object classes form modules which control scoping and visibility. IMPORT

supports multiple inheritance and polymorphism. It also facilitates re-use by

factoring common attributes and behaviors into abstract super-classes. Reuse,

in turn, reduces the redundancy level in IMPORT programs.

• Process-Based Simulation

In the process-based approach to simulation, the dynamical behavior

of a system during some period of time (or process) is described by a single

process routine. As a result, the total history (including the simulated passage

of time in the system) of each object as it moves through its corresponding

(sub)process is captured by a corresponding (sub)process routine.

In an IMPORT simulation program, process-based simulation is

readily accomplished by encoding the (sub)process routine for each object in

one or more of its methods [18]. IMPORT’s language constructs provide an

asynchronous tasking mechanism, threads, and synchronization. The

asynchronous tasking mechanism for concurrent method invocation provides

process-based simulation for IMPORT. Execution of threads allows

asynchronous processes of an object to proceed independent of other

processes until synchronization occurs. Synchronization is based on either the

global simulation time or the states of other processes.

15

• Declarative Programming

One of the goals of ISLE is to simulate complex thought processes.

Declarative programming languages (e.g., PROLOG) have been effectively

used to model reasoning, decision making and other complex behaviors. Such

capabilities have been incorporated into IMPORT via the Declarative Object

Manipulation Environment (DOME). Each object in an IMPORT program

may have an associated knowledge-base. DOME facilitates the

correspondence between each object and its knowledge-base. DOME (like

PROLOG) uses a unification algorithm and horn-clause logic to prove

theorems about objects embedded in simulations. The knowledge (and

deductive engine) encoded via DOME in the objects of an IMPORT

simulation program allows IMPORT to simulate complex, non-algorithmic

behavior quickly and effectively [18].

• Persistent Data Storage

Simulations produce a lot of data. Hence, scientists who use

simulations must collect, organize, and analyze large amounts of simulation

data. Ideally, a simulation environment would have the capability to

automatically store simulation data (preferably in an organized fashion). This

would greatly ease the collection, organization and analysis of simulation

data.

IMPORT facilitates persistency by allowing the user to label objects as

persistent . Persistent objects are automatically stored (along with their

corresponding simulation data) into an object-oriented database: the object

repository. Once an object is placed into the object repository, its simulation

data can be reported, (re)organized, and/or analyzed by scientists.

16

The historical/functional relationships between IMPORT and other basic

programming languages is represented graphically in figure 2.1 below.7

65 70 75 80 85 90 95

Algol

C++C

Pascal Modula Modula-2

Prolog ModLog
SmallTalk

IMPORT

OODB

Simula ModSim

Ada

Persistent ModSim

Figure 2.1: The Relationships between IMPORT and Other Languages

IMPORT has derived the concept of persistent object storage from C, its imperative

programming capabilities from Algol, its discrete-event simulation features from Simula,

and its declarative programming aspects from PROLOG.

2.3 The ISLE Designer Tool Set

The ISLE designer tool set is designed to provide the prospective ISLE user with the

ability to access, manipulate, modify, and/or extend the contents of the ISLE object

repository.

The ISLE designer tool set consists of several components. Figure 2.2 illustrates

the architecture of the ISLE designer tool set and the relationship between its

components.8

7 In Figure 2.1, a solid arrow ‘ ’means ‘is a direct descendant of’; whereas, a dotted arrow

‘ ’ means ‘is an indirect descendant of’. IMPORT is a direct descendent of ModSim. See [7] for an
informative survey of the languages depicted.

8 In Figure 2.2, a solid arrow ‘ ’ means ‘transmits data to’.

17

Framer

Version Control

Object Repository

Graph Edit

Text Edit

APE Typechecker

UnParser

Parser

Figure 2.2: The Architecture of the ISLE Design Tool Set

The graphical editor—one of the tools in the ISLE designer tool set—is the topic

of this thesis. The graphical editor has a very close relationship with two other

components of the ISLE designer tool set: the text editor and the framer. The text editor

aides the user in developing and manipulating IMPORT programs textually. Moreover,

the text editor receives IMPORT programs from the object repository through the

IMPORT unparser, and deposits IMPORT programs to the object repository via the

IMPORT parser. The graphical editor is able to send its results to the object repository

only through the text editor. The graphical editor receives IMPORT objects from both

the text editor and the framer. The framer allows the user to directly select system-level

frameworks from the object repository. The selected frameworks are composed of

IMPORT object models. These frameworks are then given to the graphical editor to

manipulate.

IMPORT is a strongly typed language (i.e. , all operators specify the types of their

arguments). Because of this, ISLE comes equipped with a type checker which insures

that the type of each IMPORT construct is appropriate for its context.

18

ISLE supports automated programming through the automated programming

environment (APE). APE has a knowledge base and a program synthesizer which

together assist the user is automated IMPORT programming.

2.4 The Graphical Editor: An Overview

The main objective behind this work has been to make the process of developing,

manipulating, and analyzing software through the IMPORT programming language more

user friendly by utilizing program visualization (and visual programming) techniques. To

this end, we have designed a graphical editor with the following features:

• The capability to capture graphical representations of IMPORT objects and the

relations between them.

Specifically, the graphical editor is based on the Rumbaugh [14]

Object Modeling Technique (OMT), and it supports the entity relation (ER)

model (viz. the object model). An ER model of an IMPORT program

describes the static structure of the objects in an IMPORT program and the

relationships between them.

• The capability to visually generate, explore, analyze, and reconstruct the object

diagrams of IMPORT programs.

An object model of an IMPORT program consists of IMPORT

program object diagrams. An object diagram of an IMPORT program is a

graph whose vertices are IMPORT objects and whose edges represent

relationships among IMPORT objects. Because the graphical editor allows

the user to both (passively) view IMPORT program object models, and

(actively) specify object diagrams of IMPORT programs, it serves jointly as

19

an IMPORT program visualization tool and as an IMPORT visual

programming tool.

• A user friendly GUI

The interface of the graphical editor is designed to be as user friendly

as possible. To this end, it includes various on-screen and pop-up menus, a

class browser, a relation matrix, and many other facilities including reverting,

zooming in and out of diagrams, coloring, font changing, etc .

• The capability to allow the user to dynamically create and manipulate multiple

graphical views.

Dynamical views correspond to underlying structures that represent

IMPORT objects. With these views, the user is able to run queries on the

object repository (as a whole) and see the results of their queries represented

graphically, in ‘real time’. This allows the user to observe the structure of an

IMPORT program from multiple perspectives, simultaneously.

We can characterize our visual support tool (i.e. , the program visualization and

visual programming aspects of our graphical editor) using the taxonomy of Roman and

Cox [13] (described in section 1.1.2 above) as follows:

• The scope of our visual support tool is code . The graphical editor transforms

IMPORT code into object diagrams (this is its program visualization aspect) and

vice versa (this is its visual programming aspect).

20

• The level of abstraction of our visual support tool ranges from: direct to

structural representation . In other words, the graphical editor allows the user to

either look directly at the low-level textual code of an IMPORT program, or to

focus on higher-level , structural aspects of the object model of an IMPORT

program (via graphical representations).

• The specification method used by our visual support tool is: predefinition. The

intermediate language of the graphical editor plays the role of the animator in the

Roman and Cox model. It defines a mapping from IMPORT code to elements of

an object diagram and vice versa.

• The graphical vocabulary of our visual support tool includes simple objects ,

composite objects, and worlds. The simple objects are the graphical primitives

that the graphical editor uses as basic building blocks for ER diagrams of

IMPORT programs (e.g., objects, relations, etc.). Composite objects are

incomplete (in the sense that they do not constitute a program’s entire object

diagram) collections of the graphical primitives. Worlds are complete object

diagrams for IMPORT programs. The user interacts with the graphical editor’s

interface both through controls (e.g., generating views of the object diagram) and

through the image (e.g., re-positioning a graphical entity in an object diagram,

using the mouse).

• Our visual support tool makes use of interpretation of graphics (e.g., on-screen

annotation for various graphical entities), and orchestration (e.g., allowing the

user to generate multiple views into the object diagram of an IMPORT program)

to help convey visual information to the viewer.

21

In short, the desired capabilities of the graphical editor are to allow the user to

visually specify ER models of IMPORT applications (visual programming aspect),

manipulate ER models of existing IMPORT applications, and dynamically create

graphical views of IMPORT entities and structures through database queries (program

visualization aspects). In the next few chapters we will discuss each of these capabilities

in detail.

22

CHAPTER 3

THE GRAPHICAL EDITOR:
ARCHITECTURE AND USER-INTERFACE

3.1 The Architecture of the Graphical Editor

The graphical editor has a structured design. The architectural design of the graphical

editor has two main branches: the data base manager and the interface manager.

The data base manager maintains all of the IMPORT objects, their intermediate

representations, and their corresponding graphical entities. The data base manager

receives IMPORT objects from either the text editor or the framer and deposits them into

the text editor (see Figure 2.2). An intermediate language (IML) provides the

intermediate representations of the IMPORT objects. The IML was created to handle the

translations between IMPORT programs and ER graphs (and vice versa) easier. It

facilitates storage for the object-oriented aspects of both the IMPORT programs and the

contents of the ER graphs. Intermediate representations of IMPORT objects are

generated either by the IMPORT IMLa translator or by the ER graph IML a

translator, and passed on to the data base manager. The data base manager obtains

graphical entities from either the palette (given directly as input by the user) or from the

graphing algorithm . The graphing algorithm takes intermediate representation of

IMPORT objects as input and produces corresponding graphical entities.

The interface manager oversees all of the viewing tasks concerning the diagrams,

windows, and similar interface tools. One of the most important responsibilities of the

interface manager is maintaining the query manager. The query manager handles the

23

creation and maintenance of views of IMPORT graphic entities and structures. These

views correspond to underlying structures that represent IMPORT objects.

3.1.1 The Database Manager

The purpose of the database manager is to sort all of the data (i.e. IMPORT objects, IML

entities, and graphical entities) and send them to the appropriate sub-routines. The

database manager breaks down into two parts: the graph manager and the data manager

(figure 3.1). Since there are two different forms of data that our graphical editor

manipulates, this division of the database manager is quite natural.

General
Manager

Data Base
Manager

Graph
Manager

Graph
Dictionary

Creator

Retriever

Statistics

Coder
(Graph → AST)

Unplotter

Class-Relation
Builder

Data
Manager

Data
Dctionary

Creator

Retriever

Statistics

Consistency
Checker

Grapher
(AST→ Graph)

Parser

Plotter

Design
Checker

Relation
Manager

Interface
Manager

Figure 3.1: The Structured Design of the Database Manager

24

The graph manager has two parts: the graph dictionary and the coder. The graph

dictionary keeps track of information concerning graph components. The coder performs

a two step translation process. First, it translates an ER graph into IML text. Then, it

translates the IML text into IMPORT abstract syntax trees (AST).

The data manager has two parts: the data dictionary and the grapher . The data

dictionary keeps track of information concerning IMPORT objects . The data dictionary

includes a facility for collecting statistics about IMPORT objects (e.g. how many classes

are in an IMPORT program, etc.). The grapher performs a two step translation process.

First, it translates IMPORT source code into IML text. Then, it translates the IML text

into an ER graph. Finally, it checks the graph to insure appropriate design structure.

3.1.2 The Interface Manager

The interface manager performs all of the necessary interfacing tasks. These include

zooming in/out of a window, navigating from one diagram to another, etc . The structured

design of the interface manager is shown graphically in Figure 3.2.

General
Manager

Data
Base

Manager

Interface
Manager

Parent-Child
Manager

Editor

Accessor

Zoom
Manager

Window
Manipulator Viewer

Matrix

Query
Manager

Browser

Diagram
Manager

AST
Manager

Module
Manipulator

Text
Manipulator

Figure 3.2: The Structured Design of the Interface Manager

25

The interface manager has the following five main components:

• A parent-child manager which facilitates parents accessing/manipulating their

children; and, children accessing their parents. This includes parents

adding/deleting/changing their children, and vice versa.

• A zoom manager which handles user controlled zooming in and out of

diagrams/views. This is a very useful facility when dealing with large diagrams

and multiple views.

• A window manipulator, where commands for manipulating windows are

implemented. These commands include opening, deleting, focusing, raising,

lowering, and resizing windows.

• A viewer where the relation matrix, the class browser, the query manager, and

the diagram manager reside. The relation matrix is a square matrix whose rows

and columns constitute the classes in the base diagram. The matrix itself holds

the relation among the classes represented on the intersection of rows and

columns. The class browser allows the user to browse through, add/delete/change

the classes in the base diagram quickly. The query manager administers the

multiple view diagrams. Last but not least is the diagram9 manager, which

manipulates diagrams in windows. This involves creating, opening, deleting,

resizing, closing, and saving a diagram.

• An AST manager where module and text manipulation commands are

implemented. These commands are the standard save, open, new, delete, etc.

commands one finds in many text editors.

9 Diagrams are part of windows. However, manipulating them does not necessary result in

manipulation of the window which contains them.

26

3.2 The User Interface of the Graphical Editor

The user interface of the graphical editor includes an ER palette and a main window. The

palette consists of a set of graphical primitives. These graphical primitives are the

building blocks of the object diagrams displayed on the window. The palette is static (i.e.

different palettes cannot be obtained from it). The main window (viz. the editor window)

contains the base diagram and a menu bar. The main screen of the graphical editor’s user

interface is shown in Figure 3.3.

Module Edit Inspect Run Diagram Tools Options Views Help

Select

Annotate

…

Component

DOME

D

Class Box

Object

Relation

Class

Attribute

Operation

Qualifier

Text

T

ER Palette

Figure 3.3: The Graphical Editor's Main Screen (ER Model)

27

The structure of the components of the graphical editor's screen is depicted in greater

detail in Figure 3.4.

Figure 3.4: Components of the Graphical Editor’s Main Screen

The ER Palette is the main graphical tool set and has the following tools.10

• Select: A tool for selecting elements of a diagram

• Annotate: A tool for adding comments to elements of a diagram

10 The definitions of Object , Class, Attribute , Operation, and Qualifier were taken from [14].

28

• DOME Component: A tool for labeling classes which have DOME clauses in

their definition

• Class Box : A tool for creating a class box. A class box is a box consisting of

the name of a class, its attributes, and its operations

• Object: A tool for creating an object. An object is an instance of a class.

• Class : A tool for creating a class. A class is a description of a group of objects

with similar properties, common behavior, common relationships, and common

semantics.

• Attribute: A tool for creating an attribute. An attribute is a named property of a

class describing a data value held by each object of the class.

• Operation: A tool for creating an operation. An operation is a function or

transformation that may be applied to objects in a class.

• Qualifier: A tool for creating a qualifier. A qualifier is an attribute of an object

that distinguishes among the set of objects at the 'many' end of an association.

• Text: A tool for placing text anywhere in a diagram.

• Relation: A tool for building relations (e.g., generalization, association,

aggregation, etc.) between classes. The user may define his/her own relations

with various properties.

The editor window's menu bar consists of the following elements:

• A Module menu with commands for modifying and/or manipulating modules

• An Edit menu with commands for performing basic editing tasks

29

• An Inspect menu with commands for scanning diagrams in several ways

• A Run menu which has commands that allow the user to generate IMPORT

code from diagrams, and vice versa.11 It also has commands that allow the user to

switch between operational modes and run reports and checks on the objects

• A Diagram menu which has commands to manipulate diagrams

• A Tools menu which has commands to make diagrams more organized and

readable

• An Options menu which has commands to change the window's format

• A Views menu with commands that allow the user to define, modify and access

various views of the base diagram.

• A Help menu which has commands to give the user help concerning the tool

with which he/she is working

11 Both the abstract syntax tree (AST) code and the graphical diagram are generated incrementally.

30

CHAPTER 4

TEXT AND GRAPH TRANSLATIONS

4.1 The Intermediate Language

One of the main functions of the graphical editor is to translate IMPORT text into ER

graphs and vice versa . We have created an intermediate language (IML) to perform these

translations.12 IML builds a bridge between the object-oriented semantics of an IMPORT

program and the structure of an ER graph. IML establishes semantics for the entities of

ER graphs by providing one-to-one correspondences between IMPORT objects and ER

objects, IMPORT object attributes and ER object attributes, IMPORT object methods and

ER object operations, and IMPORT object relations and ER object relations. As a result,

IML facilitates the storing of both the object-oriented aspects of an IMPORT program

and the contents of its ER graph.

IML represents information about IMPORT objects and graphical entities as a set

of records (referred to as nodes), each of which is composed of objects , attributes ,

operations and connections. The objects correspond to IMPORT objects; the attributes

are properties or characteristics of IMPORT objects; the operations are methods of

IMPORT objects; and, the connections are relations between IMPORT objects. There are

two kinds of connections: is-a and assoc . The is-a connections depict inheritance

relations between classes. The assoc connections capture any relations between objects

other than the inheritance relations.

12 The user of the graphical editor never actually comes into direct contact with the intermediate

language.

31

The BNF for IML is given in Appendix B, section B.1. Figure 4.1 shows an

example of an IML node.

node

object pirana;

attributes

mySex female;

myHungerThreshold 5;

operations

amHungry= ASK METHOD amHungry () : BOOLEAN

BEGIN

RETURN (myFood myHungerThreshold);

ENDMETHOD;

connections

isa fish;

assoc (eats,goldfish);

end node

=
=

<

Figure 4.1: An Intermediate Language Node

4.2 IMPORT Text to ER Graph Translations

The IMPORT text to ER graph translation process is a composition of two translation

mappings:

• The first mapping is from IMPORT text to IML text. The IMPORT IMLa

translator induces this mapping by: (1) extracting the relevant object-oriented

aspects of the given IMPORT program, and (2) structuring the extracted

information into the appropriate format for the second stage of the translation

process. The translator is given the AST (abstract syntax tree) of an IMPORT

program as a list and returns a list of IML records. The IMPORT IMLa

translator goes through the following main steps to accomplish its objective:

32

– It traverses the given AST list searching for IMPORT OBJECT and

ASSOCIATION declarations.

– For each OBJECT declaration, it checks the output queue for a previous

declaration of the object. If no such declaration is found, it creates an IML

record with the OBJECT information; otherwise, it reports an error. The

translator knows that there cannot be two objects with the same name in the

same program.

– For each ASSOCIATION declaration, it checks the output queue for the

objects involved in the association. If such objects exist, it puts the

association in the assoc sub-field of the connections field of the first

object in the ASSOCIATION declaration; otherwise, it reports an error. The

translator knows that there cannot be an association among objects that have

not been declared.

– It places the intermediate language record on the output queue, and

continues to do the above steps until it reaches the end of the AST list.

• The second phase is the mapping from IML text to an ER graph. This mapping

is induced by the graphing algorithm . The graphing algorithm gets a list of IML

records and draws a graph on the screen. The vertices of this graph correspond to

the nodes in the IML records and its edges correspond to the connections in the

IML records. We have chosen to use a variation of Ning’s [11] graphing

algorithm. He uses a set of drawing algorithms, called Quick-and-Dirty

algorithms to draw data flow diagrams on a computer screen.13 Our graphing

algorithm uses the same main steps as Ning’s Quick-and-Dirty algorithms;

13 See Ning [11] for a detailed description of this kind of algorithms.

33

however, it switches the places of x and y coordinates, since we want the diagram

to grow downward and not from left to right. Also, since we are dealing with ER

diagrams, we do not enforce the strict left to right ordering of nodes that Ning

enforces. The main steps in our graphing algorithm are as follows:

– Assign a non-negative integer (called a label) to each node. These labels

represent the horizontal position of the node. Nodes with connections

between them do not receive the same label.

– Place the nodes with the same label into a single set. A combination of this

step and the above step, creates a collection of maximal independent sets14 of

the graph to be drawn.

– Arrange the above collection of uniformly along the vertical axis, so that

the nodes in the same set possess the same y coordinate.

– Assign x coordinates to nodes in the first set; and, arrange them uniformly

along the horizontal axis.

– Compute x coordinates of the nodes in the other sets by taking the mean of

the x coordinates of their parents. This situates the neighboring nodes at the

same (or nearby) vertical level so that the edges in the graph between these

nodes will be parallel to each other, hence reducing edge intersections.

Moreover, the neighboring nodes will be located near each other.

– Sort the nodes in each set in ascending order of their x coordinates.

14 An independent set of a graph G V E= (,) is a subset ′ ⊆V V of vertices such that each edge in

E is incident on at most one vertex in ′V . A maximal independent set is an independent set ′V such that
for all vertices v V V∈ − ′, the set ′ ∪ { }V v is not independent—every vertex not in ′V is adjacent to

some vertex in ′V [4].

34

– Change the x coordinates of any nodes in the same set that cluster together.

– Repeatedly remove overlaps by moving the nodes along the horizontal axis.

This is done by increasing and decreasing the x coordinates of the overlapped

nodes. By changing the y coordinates only, it is assured that the adjustments

do not create new overlaps between nodes in different sets.

– Compute the display coordinates of the nodes and the edges. The starting

and ending points of the edges are computed by using the coordinates of the

source and the target nodes corresponding to each edge.

In short, for every object in the IMPORT text, an IML record is created by the

 IMPORT IML translatora . The sequence of records generated by this first mapping is

then passed on to the graphing algorithm, which converts them into an ER graph. See

appendix A for a concrete example of the above translation process.

4.3 ER Graph to IMPORT Text Translations

The ER graph to IMPORT text translation process is also a composition of two

mappings:

• The first mapping is from ER graph to IML text. The ER graph IMLa

translator induces this mapping by transforming the ER graph into IML records,

so that it can later be translated into an IMPORT program. The translator is given

the ER graph and returns a list containing IML records. The ER graph IMLa

translator goes through the following main steps to accomplish its objective:

– It traverses the given ER graph by using depth-first search [4]. In depth-

first search, the unexplored edges leaving the most recently visited vertex v

are traversed. When all of v’s edges have been traversed, the search

35

backtracks to the vertex form which v was originally discovered and continues

exploring the untraversed edges of that vertex. This process is repeated until

all the vertices that are reachable from the original source vertex are visited.

If any unvisited vertices remain in the graph, then one of them is selected as a

new source and the search is repeated from that source. This entire process is

repeated until all vertices in the graph are discovered.

– For each vertex in the ER graph, it creates an IML node which contains all

the information about the vertex and its edges.

– It arranges these nodes into a list. This list is given as input to the next step

of the process after the complete traversal of the ER graph.

• The second mapping is from IML text to an IMPORT program. The

 IML IMPORT translatora induces this mapping. It converts a list of IML

nodes into an IMPORT program. The IML IMPORT translatora goes through

the following main steps to accomplish its objective:

– It parses the given list of IML nodes.

– For every node on the list, it creates an IMPORT OBJECT. If the node has

an assoc connection, it will also create an IMPORT ASSOCIATION

corresponding to the association relation that obtains between the two

IMPORT objects.

– It stores the IMPORT objects and associations in an output file.

36

In summary, for every object in the ER graph, an IML node is created by the

 ER graph IML translatora . The sequence of nodes generated by the this first mapping

is then passed on to the IML IMPORT translatora which converts it into IMPORT

text. The IMPORT text generated by the above process will be a skeleton which captures

the basic object-oriented structure of an IMPORT program. This program skeleton must

then be embellished using the text editor to yield a completed IMPORT program. See

appendix A for a concrete example of the ER graph to IMPORT text translation process.

37

CHAPTER 5

VIEWS

5.1 Views: What and Why

In general, a view (of a program) is a representation of some component, feature, or

aspect of a program. In visual support systems, such representations are naturally

depicted in graphical forms. As such, graphical views are an integral part of any visual

support system.

Software systems (especially large ones) contain a tremendous amount of

information. By providing graphical views of programs (at varying levels of abstraction),

visual support systems allow users to comprehend large program structures by focusing

on graphical representations of individual features of a program. Consequently, views

enable visual support systems to aid the user (1) in the analysis of a program at hand (i.e. ,

program visualization) and (2) in the development of other programs (i.e. , visual

programming).

5.2 IMPORT Views

The graphical editor allows its user to dynamically create views of IMPORT programs

(we call such views IMPORT views). An IMPORT view depicts some aspect of the

object model of an IMPORT program. For example, an IMPORT view may illustrate a

set of objects in an IMPORT program that satisfy some predicate or relation. By

allowing the user to graphically focus on particular object-oriented components of an

38

IMPORT program, the graphical editor gives the user the ability to cut through the

inevitable complexities involved in analyzing and developing large IMPORT programs.

IMPORT views are generated by running queries on the object database of an

IMPORT program.15 The results of such queries are represented graphically16 on the

computer screen—in ‘real time’. The user is able to define IMPORT views: either (1)

textually, by specifying a query in the graphical editor’s query language, or (2)

graphically, by selecting a portion of a graph or a program on the computer screen using

the graphical editor’s Select tool.

The graphical editor comes equipped with a default set of pre–defined IMPORT

views. In addition to the default set of pre-defined IMPORT views, we provide the user

with the ability to store customized sets of pre–defined IMPORT views, so that he/she

can have a record of his/her most frequently used queries. Moreover, the user may

perform queries on existing dynamical IMPORT views (yielding what we call sub-views

of an IMPORT view)—we call this functionality modifying an IMPORT view.

5.3 Techniques for Generating IMPORT Views

5.3.1 Generating IMPORT Views Using the Query Language

The graphical editor’s query language aides the user in generating multiple views of

IMPORT ER diagrams. This query language is an embellished structured query language

(SQL). It allows the user to perform queries involving:

15 IMPORT programs are stored as abstract syntax trees (AST) in an object repository. When

using the graphical editor, the user does not come into direct contact with the AST. Instead, he/she views
various object-oriented graphical representations of its structure.

16 Not all views of IMPORT programs are graphical views. The user can specify whether they
want to see the result of their query as a list or as a graph . We emphasize graphical views because they
tend to be more informative.

39

• Boolean set operations

For example, if the user wants to define a view containing the union of

the set of classes with an attribute called ‘sex’, and the set of classes with an

attribute called ‘age’, then the user would enter the following query:

(find all x: class such that attribute(x,”sex”)) union

(find all x: class such that attribute(x,”age”))

• First Order Predicate logic (FOPL)

All queries in the query language involve statements of FOPL. Every

individual query begins with some quantifier. Specifically, each query will

exemplify exactly one of the following forms:

(find all …)

(find any …)

(find …)

The latter being a short-hand for “find any”.

The query language also comes equipped with the standard FOPL

connectives . For instance, the following query will generate a view of some

class which has an attribute called ‘age’; and, does not have an attribute called

‘sex’.

(find any x: class such that

(not(attribute(x,”sex”)) and attribute(x,”age”)))

• Relational comparisons

The query language supports the standard suite of relational

comparisons: (>, <, >=, <=, =, !=). For instance, the following query will

generate a view of some instance x which is taller than some other instance y.

40

(find any x,y: instance such that

attribute(x,”height”) > attribute(y,”height”))

• Wild cards

We accomplish this feature using the ‘* ’ operand. For example,

consider the following query:

(find all x,y: class such that assoc(x,y,*))

This query defines a view of all pairs of classes x, y such that x is associated

with y—in some way or other.

The BNF for the query language is depicted in Appendix B, section B.2. Also, see

Appendix A for more examples of queries and views.

5.3.2 Generating IMPORT Views Using Graphical/Program Tools

To generate a view, the user of the graphical editor may select a portion of a graph (or a

program) using the Select tool of the graphical editor. A menu will ‘pop-up’ allowing

the user to choose one of the appropriate pre-defined views for the type of component(s)

selected. This will automatically perform the desired query on the database, and return

the result to the user.

Pre-defined views allow the user to automatically perform the most common

queries. This saves the user time and effort because it eliminates the need to repeatedly

remember and manually type-in their favorite queries (for the task at hand).

Of course, not all users share the same set of ‘most commonly used queries’.

Moreover, different programs may be conducive to different query patterns. For these

reasons, we have provided the user with the capability to store custom sets of pre-defined

queries. This allows the user to customize the graphical editor’s environment to most

41

effectively suit their needs. The default set of pre-defined views (which comes pre-

installed with the graphical editor), is the set described in Table 5.1 below.

Item Selected by User Default Pre-Defined Views Provided

Some class: C
All/any subclasses of C

All/any superclasses of C
All/any relations involving C

Some instance: i All/any classes C such that i ∈ C

An attribute: A All/any classes/instances with A
An operation: O All/any classes/instances with O
A qualifier: Q All/any classes/instances with Q

An inheritance (is-a) relation: I All/any pairs of classes satisfying I
An association (assoc) relation: R All/any pairs of classes satisfying R

Table 5.1: The Default Set of Pre-Defined Views

5.4 Multiple Views and Viewing Modes

Ideally, visual support systems should make multiple views of a program available to the

user at any given time. As Grady Booch has testified: “It is impossible to capture all of

the subtle details of a complex software system in just one view” [1]. Visual support

systems with multiple-view capability have several advantages over systems that can

only display one view of a program at a time. A combination of two (non-equivalent)

views will always contain more information than either of the individual views.

Moreover, different kinds of views—with varying levels of abstraction—can be

combined in a single display. In this way, the user of a multiple-view visual support

system can not only obtain more information about a program; but, they can also obtain

several different kinds of information about a program—all at the same time. Because

multiple-view capability is essential for optimal visual support, the graphical editor

allows the user to generate, and concurrently observe or manipulate multiple IMPORT

views.

42

To distinguish between the program visualization and visual programming aspects

of our visual support tool, we have incorporated two distinct operational modes into the

graphical editor: analytical mode and editorial mode. The user is in the analytical mode

of the graphical editor when he/she is viewing one of the dynamically defined IMPORT

views. He/she is in the editorial mode of the graphical editor when he/she is

developing/modifying programs in the base diagram of the IMPORT program. The user

cannot edit IMPORT views (i.e ., IMPORT views are read-only ; whereas, the base

diagram of an IMPORT program is modifiable). While the user is observing an IMPORT

view, its components will be shown in distinct colors on the base diagram. The user can

switch from an IMPORT view to the base diagram of the IMPORT program at any time,

in order to perform modifications to the corresponding part of the IMPORT program’s

ER graph. 17 As the user makes changes to the object-oriented structure of an IMPORT

program, these changes are automatically (and in real time) updated and reflected

graphically in the display of each of the current IMPORT views.

17 This is technically feasible, since the same reference names are used for the view components

throughout the diagram and its dynamical views.

43

CHAPTER 6

CONCLUSION AND EXTENSIONS

This manuscript has presented a visual support system for the ISLE simulation

environment. The ISLE simulation environment integrates characteristics of object-

oriented modeling, process-based simulation, declarative programming, and persistent

object storage into one software engineering environment. The IMPORT programming

language is the underlying simulation language of ISLE. It satisfies the requisite

functionality of ISLE.

The ISLE visual support system was designed to provide the IMPORT

programming language with a graphical user interface (GUI) development and analysis

tool. The ISLE visual support system combines visual programming and program

visualization techniques to ease the processes of IMPORT code development and

manipulation. Because IMPORT programs can be very complex, understanding their

structure can be a daunting task. ISLE’s GUI visual support tool allows the IMPORT

user to cut through the complexity of IMPORT programs. Consequently, the graphical

editor supports the IMPORT user in all activities of the software life cycle.

The graphical editor described in this thesis defines a visual programming

mapping from graphical representations of the object-oriented structures of IMPORT

programs into IMPORT code. Inversely, the graphical editor defines a program

visualization mapping from IMPORT programs into graphical representations of their

object-oriented structures. The graphical representations of the object-oriented structures

of IMPORT programs are based on Rumbaugh’s [8] object model. They capture

graphical representations of IMPORT objects and the relations between them.

44

An intermediate language (IML) has been developed to perform translations from

IMPORT code to ER graph components and vice versa. The IML builds a bridge

between the object-oriented semantics of an IMPORT program and the structure of an ER

graph. The IML establishes semantics for the entities of an ER graph by providing a one-

to-one correspondence between the components of an IMPORT program’s object model

and the components of its ER diagram. As a result, IML facilitates the storing of both the

object-oriented aspects of an IMPORT program and the contents of its ER graph.

An important feature of this visual support tool is its ability to dynamically create

multiple views of IMPORT entities and structures via database queries. An IMPORT

view depicts some aspects of the object model of an IMPORT program. The graphical

editor allows its user to concurrently analyze and manipulate multiple IMPORT views.

Hence, the user of the graphical editor can simultaneously perceive the structure of

IMPORT programs from a variety of different perspectives and levels of abstraction.

The graphical editor’s multiple-view capability is facilitated either textually, by

specifying a query in the graphical editor’s query language, or graphically, by selecting a

portion of a graph or a program on the computer screen. The graphical editor’s query

language is an embellished, structured query language. The query language allows the

user of the graphical editor to define and modify IMPORT views using Boolean set

operations, first order predicate logic, relational comparisons, and/or ‘wildcards’.

Consequently, the user of the graphical editor can view the object-oriented structure of an

IMPORT program from many distinct points of view.

Currently, our visual support tool is only capable of capturing the ER model of an

IMPORT program. Since the IMPORT programming language combines the features of

several programming languages, the next logical step would be to generalize the

graphical editor so that it would be able to capture other models of IMPORT programs.

Specifically, IMPORT is not only object-oriented; but, it is also imperative, declarative ,

and concurrent . Accordingly, a more complete visual support system for ISLE would be

45

able to visually capture these other important aspects of IMPORT programs. For

instance, such a system might have the capability to provide visual representations of

state transition models , data flow models and concurrency models of IMPORT programs.

An extended visual support system of this kind would require the appropriate palettes,

graphical primitives, and visual programming/program visualization mappings for each

of the different models it supports.

Finally, the present graphical editor only allows the user to visualize one

IMPORT program abstraction at a time. It would be desirable for future versions of the

graphical editor to facilitate visual abstractions of multiple IMPORT programs,

simultaneously. By visualizing more than one IMPORT program abstraction at a time,

the graphical editor would aide the user in creating new IMPORT programs from existing

ones. This would greatly enhance the graphical editor user’s ability to reuse IMPORT

structures.

46

APPENDIX A

THE GRAPHICAL EDITOR:
AN EXAMPLE

A.1 The Aquarium Simulation

The ISLE aquarium simulation models a small, fish-tank environment as a predator-prey

system [18]. Aquarium systems include predator fish (viz., piranha), prey fish (viz.,

goldfish), and prey food (viz., goldfish food). Both predators and prey exhibit complex

behaviors such as hunger, exhaustion, life span, sex drive, and roaming. The simulation

models the behavior of the aquarium’s inhabitants by keeping track of their hunger level,

energy level, location, speed, and several other bits of information.

Fish in the model aquarium can die from lack of food, old age, or by becoming

fish food. Living in such an environment often requires complex decision making skills.

The inhabitants of the tank must constantly weigh the costs and benefits of potential

actions. Each fish in the model aquarium is equipped with its own expert system to

facilitate the decision making processes necessary for its survival. By altering the

knowledge bases of predators and prey, one can use the aquarium simulation to examine

how different strategies will affect the fitness of various inhabitants of an aquarium

environment. Figure A.1 depicts a sample screen from an aquarium simulation.18

18 This figure was generated by running the ISLE aquarium demo described in appendix A of [18].

47

Figure A.1: A Sample Screen from an Aquarium Simulation

A.2 IMPORT Text to ER Graph Translation in the
Aquarium Simulation

As discussed in section 4.2, the IMPORT text to ER graph translation process consists of

two mappings. The first mapping is from IMPORT text to IML text, and it is facilitated

by the IMPORT IML translatora . The second mapping is from IML text to ER graph,

and it is facilitated by the graphing algorithm.

48

We have extracted a portion of IMPORT text from the aquarium simulation

source code for the purpose of illustrating the process of translating IMPORT text into an

ER graph.19 The IMPORT text to IML text mapping is shown in figure A.2; and, the

IML text to ER graph mapping is shown in figure A.3.

node

object TankMember;

attributes of TankMember[];
operations of TankMember[];
connections

end node

node

object FishFood;
attributes of FishFood[];
operations of FishFood[];
connections

isa TankMember;

end node

node

object Fish;

attributes of Fish[];
operations of Fish[];
connections

isa TankMember;

end node

node

object GoldFish;

attributes of GoldFish[];
operations of GoldFish[];
connections

isa Fish;

end node

node

object Piranha;
attributes of Piranha[];
operations of Piranha[];
connections

isa Fish;

end node

Corresponding IML Text

MODULE AQUARIUM

M[]
TankMember = OBJECT

L[]
END OBJECT;

FishFood = OBJECT(TankMember)

L[]
END OBJECT;

Fish = OBJECT(TankMember)

L[]
END OBJECT;

GoldFish = OBJECT(Fish)

L[]
END OBJECT;

Piranha = OBJECT(Fish)

L[]
END OBJECT;

M[]
END MODULE;

Aqauarium Simulation IMPORT Code

IMPORT a IML
mapping

 →

Figure A.2: Translation of Aquarium Simulation IMPORT Code into IML Text

19 Specifically, this portion of the aquarium simulation source code describes the following

IMPORT objects: TankMember , FishFood , Fish , Piranha , and GoldFish .

49

node

object TankMember;

attributes of TankMember[];
operations of TankMember[];
connections

end node

node

object FishFood;
attributes of FishFood[];
operations of FishFood[];
connections

isa TankMember;

end node

node

object Fish;

attributes of Fish[];
operations of Fish[];
connections

isa TankMember;

end node

node

object GoldFish;

attributes of GoldFish[];
operations of GoldFish[];
connections

isa Fish;

end node

node

object Piranha;
attributes of Piranha[];
operations of Piranha[];
connections

isa Fish;

end node

Aquarium Simulation IML Text

IML a ER graph
mapping

 →

TankMember

FishFood Fish

GoldFish Piranha

Corrsponding ER Graph

Figure A.3: Translation of Aquarium Simulation IML Text into an ER Graph

After this pair of translations is performed on the extracted portion of the

aquarium simulation’s IMPORT source code, a visualization of its object-oriented

structure is obtained. Hence, we have concrete example of the program visualization

capabilities of the graphical editor.

50

A.3 ER Graph to IMPORT Text Translation in the
Aquarium Simulation

As discussed in section 4.3, the ER graph to IMPORT text translation process consists of

two mappings. The first mapping is from ER graph to IML text, and it is facilitated by

the ER graph IML translatora . The second mapping is from IML text to IMPORT

text, and it is facilitated by the IML IMPORT translatora .

Suppose we want to extend the aquarium simulation model (of the previous

section) to include the following two new classes of IMPORT objects: Plant and

ToySubmarine . We would begin by using the appropriate tools from the ER palette to

add the new classes to the existing ER diagram of the aquarium simulation model

(depicted in figure A.3). The new ER diagram (figure A.4) is then passed on to the

 ER graph IML translatora which produces the corresponding IML text. Finally, the

 IML IMPORT translatora transforms the IML text into IMPORT text (figure A.5).

The IMPORT text generated by the aforementioned process is only an IMPORT program

skeleton (i.e. , it only captures the basic object-oriented structure of an IMPORT

program). In order to obtain a full-fledged IMPORT program, we must employ the text

editor to properly embellish the IMPORT skeleton.

51

Module Edit Inspect Run Diagram Tools Options Views Help

Demo

TankMember

FishFood Fish

GoldFish Piranha

 Plant

color

photo_

synthesize()

ToySubmarine

material

launch_

Torpedo()

Select

Annotate

…

Component

DOME

D

Class Box

Object

Relation

Class

Attribute

Operation

Qualifier

Text

T

ER Palette

Figure A.4: Extending the ER Graph of the Aquarium Simulation20

By allowing the user to visually specify ER diagrams for IMPORT programs (as above),

the graphical editor facilitates visual IMPORT programming.

20 This screen is only a ‘mock-up’ of an actual graphical editor screen.

52

node

object TankMember;

L[]
end node

node

object FishFood;

L[]
end node

node

object Fish;

L[]
end node

node

object GoldFish;

L[]
end node

node

object Piranha;

L[]
end node

node

object Plant;

attributes

color;

operations

photo_synthesize();

connections

isa TankMember;

end node

node

object ToySubmarine;

attributes

material;

operations

launch_Torpedo();

connections

isa TankMember;

end node

Extended IML Text

IML a IMPORT
mapping

 →

TankMember = OBJECT

L[]
END OBJECT;

FishFood = OBJECT(TankMember)

L[]
END OBJECT;

Fish = OBJECT(TankMember)

L[]
END OBJECT;

GoldFish = OBJECT(Fish)

L[]
END OBJECT;

Piranha = OBJECT(Fish)

L[]
END OBJECT;

Plant = OBJECT(TankMember)

PRIVATE

color;

METHOD photo_synthesize()

BEGIN

END METHOD;

END OBJECT;

ToySubmarine = OBJECT(TankMember)

PRIVATE

material;

METHOD launch_Torpedo()

BEGIN

END METHOD;

END OBJECT;

Corresponding IMPORT Skeleton

Figure A.5: Translation of the Extended IML Text into an IMPORT Skeleton

53

A.4 Views of the Aquarium Simulation

As was discussed in section 5.3.1, we may generate views of IMPORT programs (called

IMPORT views) using the query language. We can illustrate this way of generating

IMPORT views using the aquarium simulation. For example, assume that we have

created 10 instances of the IMPORT object GoldFish . To generate an IMPORT view

consisting of any GoldFish that was assigned a maximum speed of 5, we may perform

the following query:

(find x: instance such that

isa(x, “GoldFish”) and (attribute(x, mySpeed) <= 5))

To create an IMPORT view containing the intersection of the set of all IMPORT

objects with an operation called reproduce , and the set of all IMPORT objects with an

operation called die , we may perform the following query:

(find all x: class such that operation(x, “reproduce”))

intersection

(find all x: class such that operation(x, “die”))

The resulting IMPORT view is depicted in figure A.6.

FishFood Fish

GoldFish Piranha

View 1

Figure A.6: An IMPORT View of the Aquarium Simulation

54

To create an IMPORT view containing all classes that have no sub-classes, we

may perform the following query:

(find all x: class such that not(isa(*,x)))

The resulting IMPORT view is depicted in figure A.7.

FishFood GoldFish Piranha Plant ToySubmarine

View 2

Figure A.7: Another IMPORT View of the Aquarium Simulation

When developing and analyzing large IMPORT programs, it helps to be able to

simultaneously observe their structure from multiple perspectives. As the above

examples illustrate, the graphical editor allows its user to generate and concurrently

analyze multiple IMPORT views.

55

APPENDIX B

LANGUAGE CONSTRUCTS

In this appendix, we will introduce the BNF language constructs for the intermediate

language and the query language. The intermediate language and the query language

were discussed in detail in section 4.1 and chapter 5 respectively.

56

B.1 The BNF for the Intermediate Language

Figure B.1 shows the BNF for the intermediate language which was discussed in section

4.1.21

node list node node list node

node object name attribute list operation list

connection list

object name identifier

attribute list attribute attribute list attribute

attribute identifier attribute expr

operation list operation operation list operation

operation identifier operation expr

connection list isa list assoc list

isa list isa isa list isa

isa identifier

assoc list assoc assoc list assoc

assoc

:

:

: ;

:

:

:

:

:

:

:

:

:

=

= [] []
[]

=

=

= []
=

=

= [] []
=

=

=

node attributes operations

connections end node

object

;

;

isa ; assoc

;

=

=

== +

=

=

=

= +

=

=

(

(

A B C X Y Z a b c x y z

0 1 2 7 8 9

identifier identifier

attribute expr : identifier IMPORT enum

operation expr : identifier IMPORT function

IMPORT function function kind identifier identifier

return type function body

identifier letter number

letter

number

, ;

METHOD

;

)

)

: *

: *

:

:

L L

L

Figure B.1: BNF for the Intermediate Language

21 For further information on the constructs IMPORT enum and IMPORT function see the

IMPORT language reference documentation [18].

57

B.2 The BNF for the Query Language

Figure B.2 below depicts the BNF for the query language discussed in chapter 5.

expr : expr set operation expr

expr : selector clause

selector select list

select list select item select list select item

select item qualifier variable list

clause sub clause logical connective sub clause

sub clause sub clause relational comparison sub clause

sub clause operator operands

operator

operands variable operand

= ()
=

=

=

= [] ()
= [] ()+

= ()+
=

=

= +

*

:

:

:

:

:

:

:

:

(

(

find such that

* : class instance assoc

not

class instance attribute isa

)

operation quantifier assoc

,

,

))

,

operand variable variable

set operation

logical connective

relational comparison

variable list variable variable list variable

variable alphanumeric

alphanumeric letter number

letter

number

:

:

:

:

:

:

: *

:

:

=

=

=

=

=

=

= +

=

=

“ ”

union intersection difference

and or

A B C X Y Z a b c x y z

0 1 2 7 8

> < >= <= = !=

*

L L

L 99

all anyquantifier :=

Figure B.2: BNF for the Query Language

58

REFERENCES

1. Booch, G., 1994, Object-Oriented Analysis and Design, Second Edition,

Benjamin/Cummings, New York.

2. Brown, G. P., et. al., August 1985, “Program Visualization: Graphical Support for

Software Development”, IEEE Computer, 18(8) 27-35.

3. Chang, S. K., 1990, “Visual Reasoning for Information Retrieval from Very Large

Databases”, Journal of Visual Languages and Computing, 1(1) 41-58.

4. Cormen, T. H., Leiserson, C. E., and Rivest, R. L., 1990, Introduction to Algorithms,

McGraw-Hill, New York.

5. Grafton, R. B. and Ichikawa, T., August 1985, “Guest Editors’ Introduction in the

Special Issue on Visual Programming”, IEEE Computer . 18(8) 6-9.

6. Johnson, R. E., Spring 1994, Lecture Notes for Computer Science 397 at the

University of Illinois Urbana-Champaign.

7. Kamin, S. N., 1990, Programming Languages: An Interpreter-Based Approach,

Addison-Wesley, New York.

8. Kreutzer, W., 1986, System Simulation Programming Styles and Languages,

International Computer Science Series, Addison-Wesley, Sydney.

9. Mollamustafaoglu, L., Gurkan, G., and Ozge, A. Y., January 1993, “Object-Oriented

Design of Output Analysis Tools for Simulation Languages”, Simulation , 60(1) 6-16.

59

10. Myers, B. A., 1990, “Taxonomies of Visual Programming and Program

Visualization”, Journal of Visual Languages and Computing, 1(1) 97-123.

11. Ning, Q., 1984, “Graphical Representation of Dataflow Diagrams: Design and

Implementation”, CS Masters Thesis, UIUC.

12. Raeder, G., August 1985, “A Survey of Current Graphical Programming

Techniques”, IEEE Computer, 18(8) 11-25 .

13. Roman, G. C. and Cox, K. C., December 1993, “A Taxonomy of Program

Visualization Systems”, IEEE Computer, 26 11-24.

14. Rumbaugh, J., et. al. , 1991, Object-Oriented Modeling and Design, Prentice Hall,

Englewood Cliffs, New Jersey.

15. Stelovsky, J., Ackermann, D., and Conti, P., May 1986, “Visualizing of Program

Structures: Support Concepts and Implementation”, in the Selected Contributions of

Visualization in Programming 5th Interdisciplinary Workshop in Informatics and

Psychology, LNCS , 282 37-52.

16. Tanir, O. and Sevinc, S., February 1994, “Defining Requirements for a Standard

Simulation Environment”, IEEE Computer , 27(2) 28-34.

17. Whitehurst, R. A., et. al., 1993, “Integrated Object Technologies for General Purpose

Simulation”, OOPSLA ‘93 .

18. Whitehurst, R. A., et. al., 1995, Integrated Simulation Language Environment , on-

line manuscript.

